
Self-avoiding path walks on lattices-a new universality class?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 2257

(http://iopscience.iop.org/0305-4470/17/11/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 2257-2267. Printed in Great Britain 
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Institute of Physics, Chinese Academy of Sciences, Beijing, China 
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Abstract. The trails problem (self-avoiding path walks) is reconsidered by the conventional 
series expansion approach. An exact enumeration on the square, triangular and simple 
cubic lattices is done by computer up to 18, 12 and 1 1  steps respectively. The more 
self-consistent and refined results, between the connective constant and the corresponding 
critical exponent, indicate the possibility of there being a different universality class from 
that of the self-avoiding walk. An average approach based on Stolz’s theorem is proposed 
which often appears to be smoother and better than the traditional one. 

1. Introduction 

The random walks with various simple and peculiar global excluded volume effects, 
i.e. some kinds of long-range correlation, have been actively studied for some years 
(for reviews, see e.g. Essam 1980, Domb 1963, de Gennes 1979, McKenzie 1976). The 
self-avoiding walk (SAW) is the most prominent example, for it provides a simple model 
for polymer chains which takes into account in a realistic manner the excluded volume 
effect (Domb 1963). It is unthinkable that one can propose other models simpler than 
SAWS to consider the excluded volume effect, which is perhaps the most important 
physical effect for polymers. Unfortunately, one can only use various numerical 
methods but not analytic ones to approach this elegant simple model because of its 
formidable mathematical complexities. 

Another model of random walks, still with some simple and peculiar global excluded 
volume effects, the ‘trails’ problem, is seldom studied (Malakis 1975, 1976). In a trail 
no (lattice) edge occurs (or is visited) more than once. Here we prefer to call it a 
self-avoiding path walk (SAPW) because of the direct and clear meaning presented in 
this terminology. An asymptotic analysis of the previous data on the square lattice 
strongly suggested that certain critical exponents obey the same values for both the 
SAPW and SAW (Malakis 1975, 1976). However, as pointed out by the same author, 
there is no simple relation between SAPWS and SAWS on its covering lattice. The most 
one can say is: ‘to every trail on a lattice there corresponds a SAW on its covering 
lattice but not vice versa’. In other words, only a homomorphic but not an isomorphic 
relation exists between SAPWS and SAWS on the covering lattice, and it is not possible 
from this relation to judge whether SAPWS and SAWS belong to the same universality class. 

A direct and a cell-tp-cell renormalisation approach for the SAPW on the square 
lattice were done by us recently (Li et al 1984). But one cannot give a conclusive 
result as far as the universality class is concerned by use of the small cell one-parameter 
PSRG approach. 

0305-4470/84/112257 + 11%02.25 0 1984 The Institute of Physics 2257 



2258 Z C Zhou and T C Li 

Since the SAPW has a very different global excluded volume effect from the SAW, 
the difference cannot be eliminated by any scaling transformation, as happens for 
short-range correlations. One has reason to expect the possibility of a new universality 
class for the SAPW. Obviously, it is an  interesting and  worthy problem. We checked 
the previous series expansion results (Malakis 1976), and  found that some errors may 
happen in their exact enumeration, which is the fundamental starting point for the 
series expansion methods. Also some unsatisfactory inconsistencies exist in their 
numerical results. We will give some details in the following sections. Of course 
through Malakis’s work some useful information is provided. In particular, after 
comparing with the parallel data of SAWS, he found that the behaviours of the various 
estimates appear to be smoother for the SAPW problem than for the SAW problem. This 
gives us some confidence to refine the results by the series expansion approach for 

An exact enumeration on the square, triangular and simple cubic lattices was done 
by computer up  to 18, 12 and  11  steps respectively. Our results for the SAPW indicate 
that it may belong to a new universality class, in contrast with the previous strong 
suggestion of the same class as the SAW. 

SAPWS. 

2. Connective constants and the susceptibility exponents 

The starting point for series expansion is the exact enumeration for the number CN 
of N-step SAPWS on a lattice (Domb 1963). Firstly, one has the symmetry of a given 
lattice. Thus one only needs to enumerate the CN paths with their first step on one 
of the Z nearest-neighbour sites, i.e. 

cN/z = E N .  (1) 
Secondly, one can use further the symmetry of a given lattice according to the elegant 
enumeration method (Martin 1974). For example, for EN on the square lattice, for 
any path except the straight line (along, say, the right direction), it can go up  or down 
after m ( < N )  single direction steps. Since these two categories of paths have a n  
isomorphic relation, thus one has - 

C N , , = 2 m + l ,  (2) 

where the subscripts s, t and sc mean square, triangular and simple cubic lattice 
respectively. It is obvious that (1)-(4) are valid both for SAWS and SAPWS. However, 
one can find that (2) is not fulfilled for some CLs ( N  2 11) in a previous paper (Malakis 
1976, table l) ,  and  we d o  not think that they are misprints, for our CLs deviate 
considerably from theirs when N 3  1 I .  Thus it is worth redoing even a conventional 
series expansion for the SAPW. 

We give the total number of N-step SAPWS on the square, triangular and  simple 
cubic lattices in table 1. As for RWS and  SAWS, we define the exponents y and v by 
the following asymptotic relations for large N for the SAPW: 
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Table 1. The SAPW problem on the square (sQ), triangular (TR) and simple cubic (sc) 
lattices. CN and p N  are the number and the mean square end-to-end distance of n-step 
SAPWS respectively. 

SQ lattice TR lattice sc lattice 
N C N  C N P , W  C N  C N  C,P.W 

2 12 32 30 30 72 
3 36 164 I50 I50 582 
4 108 704 738 750 4 032 
5 316 2 748 3 570 3 726 25 758 
6 916 I O  096 17 118 18 438 156 504 
7 2 628 35 524 81 498 90 966 918 390 
8 7 500 121 056 385 710 447 918 5 254368 
9 21 268 402 420 1 817 046 2 201 622 29 482 998 

I O  60 092 1311504 8528478 10809006 162926040 
I I  I69 092 4205480 39903462 52999446 889246854 
12 474 924 13304860 186198642 
13 1 329 188 41 612 328 
14 3 715 244 I28 878 688 
15 10 359 636 395 767 164 
16 28856252 1206315216 
17 80 220 244 3 652 737 976 
18 222847804 10995975680 

where pN is the mean square end-to-end distance of an N-step SAPW. We then define 

p N  Z5 c N / c N - ,  (7) 

which is different from Malakis (1976), but identical with that appearing in the current 
literature (e.g. Domb 1963). In table 2 we give these corresponding successive ratios 
for three lattices. The linear projections and their mean values are defined as follows: 

x(n, m ;  E )  = ( n  - m)- ' [ (n  + E ) X ,  - ( m  + EIX,,,],  

X ( n ,  m ; E )  = t [  X ( n ,  m ; E )  + X ( n  - I ,  m - 1 ; E ) ] ,  

O S E S f ,  (8) 

O S E E ; .  (9) 

From (8) and (9), one has z ( n ,  n - 1;  E )  = X ( n ,  n -2;  E ) ,  and their values are listed in 
table 2. For the loose-packed square lattice and simple cubic lattice, we took m = n -2 
to divide the different properties for even and odd numbers of N; also the corresponding 
average values are listed in table 2 .  From table 2 we deduce the following estimates 
of connective constants: 

ps = 2.7 18 * 0.002 = e, 

k,  = 4.525 f 0.006, 

ksc = 4.850 f 0.001. 

(10) 

( 1  1) 

(12) 
These estimates of ps are very consistent with the extrapolated values obtained from 
the nearly straight lines in the plots of pN against 1/N (figure 1). From these estimates 
of ps we get the corresponding approximate susceptibility exponents y N s ,  according 
to the following formula: 

7 ; -  1 = N ( / L N / ~ ' - I ) - ( Y -  I ) (  1 +0( I /  N)). (13) 
In table 2 ,  some values of connective constants around the estimates in (10)-(12) are 
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Table 2. The linear projections of the connective constants for the ( a )  square, (b) simple 
cubic and ( c )  triangular lattices. The last two columns of each row are obtained by use of 
the estimated exponent y. 

( a )  

14 2.795 I 2.7138 2.7146 2.7982 2.7106 2.7203 2.7302 
1 5  2.7884 2.7213 2.7 176 2.7919 2.7 I49 2.7186 2.7279 
16 2.7855 2.7178 2.7195 2.7878 2.7147 2.7200 2.7287 
17 2.7800 2.7169 2.7173 2.7828 2.7143 2.7 184 2.7266 
18 2.7780 2.7180 2.7 I74 2.7797 2.7151 2.7 197 2.7275 

7 4.9336 4.8477 4.8465 4.9379 4.8308 4.8484 4.85 I3 
8 4.9240 4.8507 4.8492 4.9268 4.8425 4.8494 4.8510 
9 4.9 152 4.8509 4.8508 4.9176 4.8464 4.8489 4.8502 

I O  4.9096 4.8518 4.85 I3 4.91 12 4.8487 4.8499 4.8506 
1 1  4.9033 4.8494 4.8506 4.9049 4.8477 4.8490 4.8497 

P(N,  N P S d N  N P&(Y P & ( Y  
(c )  - 1 : O )  PNSt  - 1 ; O )  = 1.385) = 1.333) 

8 4.7328 4.4934 4.7408 4.5294 4.5 155 4.5436 
9 4.7 109 4.5362 4.7 I72 4.5288 4.5177 4.5428 
IO 4.6936 4.5378 4.6986 4.53 1 1 4.5196 4.5423 
11 4.6789 4.53 I4 4.683 1 4.5276 4.5206 4.5414 
12 4.6662 4.5274 4.6699 4.5243 4.5212 4.5402 

N -1 

1 /N 
121,~IO 9 a I 6 

48401 Sir&lecubic lattice 

) ,;” , , ,Tr:;lar l c t + + i c ~ ~ ~ ~ ~ - /  

4 52 4 840 

1/N 
5 6 I 0 910Tl 

Figure 1. ( a )  Ratio plot for square lattice. + N = C N / C ~ - l ,  P ~ , ~ ~ = Z : = ,  C,,,/Z,”il C,. 
( b )  Ratio plot for triangular and simple cubic lattices: f i N  and j ~ ~ , ~ ~  are as in ( a ) .  
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also used to obtain y&s for comparison. The corresponding figures 2 show that 
exponents y)Ns are very sensitive to the corresponding estimates of p's. In the square 
lattice, the value of 2.713 for p',  which had been used by Malakis (1976), is also used 
for comparison. From table 2, we think that the following exponents may be tempting: 

7: - 7: - 1.385, (14) 

yLc- 1.125. (15) 

' I N  

1 1 1 I I  I I 1.330 
11109 8 7 6 5 

1 /N 

Figure 2 .  Susceptibility exponents yN ( = N ( p N / p ' -  I ) -  1) against 1 / N  for the square, 
triangular and simple cubic lattices. The adopted estimates p' are: A, p'=2.713;  B, 
~ ' = 2 . 7 1 8 2 ;  C, p'=2.719; D, p'=4.523; E, p'=4.525;  F, ~ ' = 4 . 5 3 0 ;  G, +'=4.849; H, 
p' = 4.850. 

These exponents are different from those for SAWS. We think the above new exponents 
may be preferable. Firstly, the exponents in (14) and ( 1  5 )  come from the rather reliable 
estimates of p's, as one can see from our figure 1, as well as table 2. Secondly, in 
Malakis (1976, figure 1) a wide range of a's (the more usual notation for which is 
y - l) ,  0.32, 0.33 and 0.34, had been used to estimate critical exponents and all of them 
(on the corresponding pN-(l/ N )  plot) converge to the same point p ' =  2.713; while 
for fitting the SAPW and SAW class, another value of p = 2.718 . . . = e  had to be adopted 
(see the second columns in Malakis (1976), tables 3 and 4), and if the convergent value 
2.713 is adopted (see the third columns in Malakis (1976), tables 3 and 4), then the 
obtained yks  always present considerable discrepancies (more than ten per cent) with 
those for SAWS. One has to acknowledge this unsatisfactory and inconsistent 
situation. If we assume that (14) and (15) are valid, and reset them into the more 
accurate expression for p k ,  

k = NpN/(N + 7 ' -  1) - p ( l  +0(1/ N2)), (16) 
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we get the following refined values (see the last columns of each row in table 2): 

p, = 2.7 182 * 0.001 5, 

p, = 4.523 * 0.003, 

pSc = 4.849 i 0.001. 

(17) 

(18) 

(19) 

These values are well consistent with the original ones given by ( I O )  and (1 1)  (figure 
3). The self-consistency for 3~ is satisfactory (see figure 3(b)).  Thirdly, for the square 
and triangular lattices, we nearly obtained the same self-consistent value of y - 1.385, 
which is in agreement with the well accepted conclusion that critical exponents only 
depend on dimensionality. If one insists on the same universality class conclusion, 
the considerable inconsistency between p's and y's reappears (table 2). Lastly, 
although yks  are very sensitive to the estimate of p's and a considerable dispersion 
appears in our figure 2, one can hardly think how y k s  can approach those for SAWS 

(see the arrows in figure 2). In other words, our data for susceptibility exponents 
indicate that not only the values but also the tendencies present a considerable 
discrepancy with those of SAWS. 

- 1 2 7 3 6  

-2716 
9 1011 18 

1 /N  
6 7 8 910 12 

11 
1 /N  

4 54 

453  

4 52 
I N  

Figure 3. ( a )  Connective constants p &  ( = N p N / ( N  +y'- 1)) against I /N for the square 
lattice. The y's are marked in the plot. ( b )  Connective constants p's against I / N  for the 
simple cubic and triangular lattices: the p's against 1/N2 plot (curves A and D) is also 
given for the triangular lattice. B, pN,st; C, pw 

According to Stolz's theorem (see e.g. Hobson eta1 1926), if the following conditions 
are fulfilled for the two series { X N }  and { Y N } :  

YN+, > YN ; ,IiIim X N  = +a and lim Y N  = +a, 
N - m  

then we have 

lim X N /  YN = A, 
N-CC 

if the following limit exists: limN+co ( X N  - X N - l ) / (  Y N  - Y N - , )  = A. 
We define series { X N }  and { YN} by 

m = O  m=O 



SAPWS on lattices-a new universality class? 2263 

Table 3. The susceptibility exponents for the ( a )  square, ( b )  simple cubic and (c) triangular 
lattices. The connective constants used appear in brackets. 

( a )  

N ~ ~ ( 2 . 7 1 9 )  ~ ~ ( 2 . 7 1 8 )  ~ ~ ( 2 . 7 1 3 )  yyst(2.719) y N , d e )  yst(N, N-2 ,  E = O ;  p = e )  

14 1.3919 1.3872 1.4397 1.4078 1.4121 1.3792 
15 1.3829 1.3886 1.4363 1.4022 I .4068 I .3840 
16 1.3910 1.3970 1.4409 1.4047 1.4095 1.3913 
17 1.3814 1.3877 1.4373 1.3988 1.4039 1.3867 
18 1.3903 1.3970 1.4425 1.4018 1.4072 1.3855 

( b )  yN(4.850) ~ ~ ( 4 . 8 4 9 )  yN(4.848) y~,st(4.850) YN,st(4.849) y.st(4.848) 

7 1.1207 1.1222 1.1236 1.1269 1.1284 1.1298 
8 1.1221 1.1238 1.1254 1.1267 1.1284 1.1301 
9 1.1211 I .  I229 1.1248 1.1254 1.1273 1.1292 

I O  1.1228 1.1249 1.1270 1.1262 1.1283 1.1304 
1 1  1.1208 1.1231 1.1254 1.1245 1.1268 1.1291 

(c) ~ ~ ( 4 . 5 2 3 )  ~ ~ ( 4 . 5 2 5 )  ~ ~ ( 4 . 5 2 7 )  ~ ~ 3 d 4 . 5 2 3 )  y.st(4.524) 

8 1.3710 1.3673 1.3636 1.3852 1.3833 
9 1.3739 1.3698 1.3656 1.3864 1.3844 

I O  1.3772 1.3726 1.3680 1.3882 1.3859 
11  1.3790 1.3740 I .3690 1.3893 1.3867 
12 1.3800 1.3745 1.3691 1.3895 1.3868 

(for which the conditions of Stolz's theorem are fulfilled obviously); then we have 

lim ( 2 C m / l '  m = O  Cm)  = p ,  
N - S  m=O 

if the following limit exists: limN+S CN/C,-, = l imN+m p N  = p. Not only has one the 
equality of the two limits for the series {CN/CN-l} and { X N /  Y N } ,  but we can also 
show that they have the same asymptotic behaviour by the following few steps: 

N 

(c, + ~ , ) / 2  C, - c ( x )  d x  - J xy- 'px dx, 
I=  I  K 

in which the trapezoidal rule and the asymptotic form ( 5 )  for C, have been used, and 
K is any finite constant. 

where we have used y > 1, p > 0 and N >> 1 ; thus we have the following asymptotic 
formula: 
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i.e. 

An alternative way to argue the validity of (20) is as follows: Z;,”=,C,/Z;,”If Cm- 
Hm=I c,/c, X C N - ~ / H ~ T ~  C,,, xCN/CN-I-[l + s ( N ) - s ( N - l ) ] x C N / C N - , ,  in 
which Stolz’s theorem has been applied to the series {E,”=, Cm/CN}, and we get 
Zm=I Cm/CN - [ p / ( p  - 1)][1 +s(N)],  and S(N)+N,,O. For the usual asymptotic 
behaviours of 6 ( N ) ,  one has N [ S ( N ) -  6 ( N  - l)]+N+mo and thus the asymptotic form 
(20) is obtained. 

Using (20), the results for the square, triangular and simple cubic lattices are shown 
in figures 1 and 3. Hereafter the subscript St is used to denote the approach by Stolz’s 
theorem. When comparing with the original direct ratio pN = C N / C N - I  one can find 
that the results for two different average methods are well consistent, and the approach 
by Stolz’s theorem appears to be smoother and better than the other one. 

N 

N 

3. Analysis of mean square sizes 

The purpose of this section is to utilise the results obtained by the method of exact 
enumeration to analyse the mean square end-to-end distance. In table 1 we give the 
integer P N C N  for the square and simple cubic lattices. 

According to (6),  except for the constant coefficient there is only one unknown 
parameter, the correlation-length exponent v. Thus the situation in this section is 
simpler than before. As in 4 2, two different average approaches are used here. We 
define two series {Xm} and { Ym} as follows: Xm = Z,,_, pw,, Ym = 2,,_) 1, where {w,}  
and pw, are the distinguished m-step paths and the square end-to-end distance respec- 
tively. We have 

(21) PN = X N /  YN -  AN^" 
and the corresponding 

Since {pN} is a divergent series, one has to prove the legality of using Stolz’s theorem 
first. By application of Stolz’s theorem to the ratios of pNs and pN,St~  

Since 1 - 2 V I  N < ( 1 - 1 / N)” < 1 ( N  >> 1, N > o), we have 1 < PN/PN,st < 1 + 2 v, in other 
words, the dominant terms of the two divergent series {pN} and {pN,St} have the same 
degree of divergence -N2”. The two kinds of vNs are defined as follows: 

vN =tN(pN+i/pN-1)- v[l +O( l /N)I  (23) 

v N , S t = ( N / 2 1 ’ ) ( P N + , . S t / P N . S t -  l> -  v[l +O(l /  (24) 

and 

In table 4 we list v N s  and their linear projections. Also the property of even-odd 
oscillation for loose packed lattices has been considered. Our data show again that 
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Table 4. Correlation-length exponents for the ( a )  square and ( b )  simple cubic lattices. 

( a )  

N 2vN 2v(N,  N - 2 ; O )  2 ~ N . s ~  2vS,(N, N - 2 ; O )  

12 1.41006 1.482 I O  1.462 88 1.484 98 
13 1.40461 1.482 25 1.460 28 1.492 40 
14 1.41805 1.466 03 1.465 87 1.483 81 
15 1.41409 1.475 73 1.463 61 1.485 26 
16 1.42745 1.493 20 1.469 68 1.496 35 
17 1.42212 1.482 35 1.467 09 1.493 19 

( b )  
6 1.13654 1.12235 1.184 I O  1.12842 
7 1.13340 1.11887 1.17474 1.122 54 
8 1.13265 1.120 99 1.16863 1.122 01 
9 1.13021 1.119 04 1.162 51 1.120 12 

10 1 .13131 1.12595 1.15990 1.125 01 

the results obtained by (24) appear to be smoother and better than those obtained by 
(23). From table 4 we get 

2v,, = 1.490, (25) 

2 ~ ~ ~ = =  1.125=:, (26) 

which are well consistent with the extrapolated values from some nearly straight lines 
in figure 4. The correlation-length exponent is very close to that of SAWS for ZD, while 
for 3~ it is different from the SAW one, and is close to our PSRG result (Li et a1 1984). 

4. Conclusion 

A simple, peculiar and seldom studied excluded volume effect model, the SAPW, is 
studied by the series expansion method. Since there is a very different global excluded- 
volume effect from that of SAWS, one may expect the possibility of emergence of a new 
universality class for SAPWS. For the interest and worth of this problem, we re-examine 
the previous strong suggestion that trails and SAWS belong to the same universality 
class. After checking the previous results we found that one needs to revise the exact 
enumeration of paths on the square lattice. An exact enumeration for the square, 
triangular and simple cubic lattices is done by computer up to 18, 12, and 11 steps 
respectively. In addition to the traditional average method in series expansion, another 
approach based on Stolz’s theorem is used and it appears to be smoother and better 
than the former one. Satisfactory straight lines are obtained in our plot of connective 
constant against 1/N for three kinds of lattices; thus we think that the following 
connective constants are reliable: p, = 2.7182 * 0.001 5 ,  p, = 4.523 * 0.003 and pS, = 
4.849 * 0.001. Considerable dispersions are present when one uses the above connective 
constants to deduce susceptibility exponents. This also happens to SAWS. Since 
In CN = N In p + ( y  - 1) In N - N In p, to deduce the small term from an estimate of 
the dominant term, one has to run risks. Our results for 2~ lattices indicate the 
possibility of a different class for SAPWS. If one insists on the same class conclusion, 



2266 Z CZhou and T C  Li 

150  
1 I ' I " " ' I  . SAW 

7 0 9 10 12 17 1 /N  

. I ^^  
V;(S+ _ _ _ - - - -  

> 1 200- MI* 
N 

115or 

i 
11251/-- - 

1'"' 
L o  

, 

- 1 3 5  , 

_ _ - - -  

11001 I 
1211109 8 7 6 5 

1 /N 

Figure 4. Correlation-length exponent U* as a function of I/N for the square and simple 
cubic lattices. The subscript St denotes the average approach by use of Stolz's theorem. 
After initial irregularities the 2D U&, apphrently tends to the same value as for SAWS. The 
3D uN of two different average approaches apparently tend to the same value A, in contrast 
with the SAW Flory value 3 .  

then one has to tolerate a considerable inconsistency between connective constant and 
susceptibility exponent, which happens at least for the up-to-date limited number of 
exact enumerations ; to keep consistency, a considerable difference exists between the 
values given here and that of the SAW. Our results for 2D show that the correlation-length 
exponent v N  unambiguously approaches or even equals that of SAWS. Our results for 
3~ present a satisfactory linear relation between v N  and 1/N, thus v - ~  16 seems more 
tempting than 3 of the SAW. 

We should mention that only a conventional series expansion result is presented 
in this paper, and no confluent corrections to the dominant asymptotic behaviour have 
been considered above. Some very recently published papers (e.g. Djordjevic et a1 
1983) have pointed out the importance of confluent corrections when estimating the 
exponent v. After doing some confluent corrections, our result is v3D - 0.5729 * 0.0002, 
which is extremely close to our direct PSRG result, vjD(b = 2) = 0.5728 (Li et a1 1984). 
This near coincidence had happened to SAWS too, in which the v3D(b = 2) = 0.5875 
(Family 1981) is just the same as that of Djordjevic et a1 (1983). Our result of 0.5729 
still has considerable deviation from 0.5875 of SAWS, even though the confluent effects 
have been taken into account for series expansion in both cases. 
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